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ABSTRACT
Multi-decadal prediction of estuarine sedimentation with high-fidelity hydromorphodynamic
models presents high computation costs, especially when accounting for stochasticity and uncer-
tainty. A StochAstic model for Multi-decadaL Estuarine Sedimentation (SeAMLESS) is formu-
lated here to support a specific decision-need related to resilience planning and coastal manage-
ment: estimating future sedimentation and dredging within a sedimentation basin for different
scenarios of sea level rise and rules for dredging. SeAMLESS combines a reduced-dimension
process model and a response-surface surrogate model to yield an ordinary differential equa-
tion that can be integrated over stochastic time series of storm events. Applications show that
SeAMLESS can predict probabilities and amounts of future basin sedimentation and dredging
with minimal loss of accuracy, compared to a high-fidelity model, while delivering(104−105)
reduction in computational costs.

1. Introduction1

Estuaries are embayments open to coastal oceans that receive freshwater runoff (Pritchard, 1967), and are increas-2

ingly confronted by climate change and the effects of urban development around the embayment and/or in the watershed3

such as land reclamation and waste discharges (Lotze et al., 2006). Estuaries represent critical coastal habitats that sup-4

port ecosystems including birds, fish and invertebrates (McLusky and Elliott, 2004). Additionally, estuaries provide5

benefits to society (or ecosystem services) including recreational opportunities for coastal communities, pollutant and6

nutrient processing, support for the shipping, defense and fishing industries, and urban amenities such as access to7

wildlife, seafood, and open spaces (Barbier et al., 2011). These many benefits are often in competition and need to be8

balanced, thus posing challenges for management (Elliott and Whitfield, 2011).9

Excess sedimentation is one of the costliest and potentially environmentally damaging management challenges of10

estuaries (Chesapeake Bay Program, 2006; Kiefer et al., 2000). Excess deposition negatively affects navigation and11

damages ecosystems by submerging wetland habitat and changing inundation regimes. Changes to bathymetry can12

negatively affect circulation and water quality, and the introduction of non-native or invasive species through dredging13

operations can reduce or degrade habitat for sensitive marsh animals (Haltiner et al., 1996). Management options14

such as source control and dredging are costly. Dredging requirements from federal, state and local agencies in the15
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United States are expected to reach $2 billion/year, with the U.S. Army Corps of Engineers spending $1.3 billion in16

2015 alone (US Army Corps of Engineers et al., 2016). Moreover, predicting future dredging requirements is difficult17

due to uncertain variability in estuarine dynamics and inherent complexities in sedimentation, watershed and tidal18

dynamics and significant changes due to human influences (Bull et al., 2002). In particular, estuarine sedimentation is19

driven by watershed runoff and tidal currents which vary with hourly and longer time scales and are also affected by20

sea level rise (SLR) and land-use/management changes (McLusky and Elliott, 2004; Griggs et al., 2017). High-fidelity21

deterministic models such as Delft3D are oftentimes used to answer questions on estuarine sedimentation (Yu et al.,22

2012; Thanh et al., 2019). Arid regions such as southern California experience highly episodic hydrology with stream23

flows that vary by several orders of magnitude over time scales of hours to a few days. Here, greater than 90% of24

sedimentation occurs quickly during the most intense storms (Kroll, 1975; Warrick and Milliman, 2003). The wide25

range of variability in process magnitude and time scales, along with significant uncertainty in model input parameters,26

makes it virtually impossible to deterministically predict future sedimentation and associated dredging requirements,27

thereby motivating the need for stochastic modeling approaches.28

Stochastic modeling, notably with Monte Carlo simulations, has increasingly been used in environmental studies29

to characterize ranges and likelihoods of system outcomes over time scales of days, months, years and even decades or30

centuries (Fedra, 1983). Furthermore, stochastic modeling is especially useful for environmental management because31

probabilities are assigned to a range of outcomes, creating opportunities to enhance dialogue and deliberation among32

stakeholders towards development of cost effective and fair management measures (Isukapalli et al., 1998). However,33

a major limitation of stochastic modeling stems from complex, interdependent, environmental process dynamics that34

require use of mechanistic models with high computational demands (Sparrevik et al., 2012), or so-called high-fidelity35

models. Use of high-fidelity models make it very difficult or even impossible to complete the thousands or more Monte36

Carlo simulations needed to account for stochasticity (Liu et al., 2007).37

Fast-running surrogate models have emerged as a promising alternative to high-fidelity models with demonstrated38

ability to radically reduce computational costs (Razavi et al., 2012). One type of surrogate model is a response-surface39

function, which captures relationships (e.g., through polynomial approximations) between several explanatory vari-40

ables of a system (Razavi et al., 2012; Koziel and Leifsson, 2013). These response surfaces are developed by running41

a relatively modest number of high-fidelity model simulations over a carefully selected set of input parameter values42

(Razavi et al., 2012; Koziel and Leifsson, 2013). Once the surrogate model is trained to quantify the desired system43

outcomes over a suitable parameter space, thousands or even millions of Monte Carlo simulations can easily be com-44

pleted with significantly reduced runtimes compared to the mechanistic model (Fedra, 1983; Isukapalli et al., 1998; Liu45

et al., 2007; Razavi et al., 2012; Koziel and Leifsson, 2013). Examples of response surface surrogate models in water46

resources include optimization studies (Razavi et al., 2012), improving aquifer management and regulatory support47
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(Schultz et al., 2004; Sreekanth and Datta, 2011; Kourakos and Mantoglou, 2009), and model selection (Mohammadi48

et al., 2018). Another type of surrogate model is a lower fidelity model, which can be viewed as a lower-resolution49

versions of a high resolution model (Razavi et al., 2012).50

Within the field of sediment transport and hydromorphodynamics, Berends et al. (2019) present a low fidelity51

surrogate modeling approach for characterizing the uncertainty of estuarine sedimentation predicted by a high-fidelity52

model. The lower resolution model reduced run times by a factor of sixteen compared to the high fidelity model (or53

6.25%), which allowed for an 85% reduction in the overall compute time needed to map out sedimentation patterns54

(and uncertainties) using a Monte Carlo approach. Additionally, Mohammadi et al. (2018) describe a response surface55

surrogate model for a hydro-morphodynamic model (TELEMAC-MASCARET with SISYPHE module) of the lower56

Rhine river where Bayesian model selection is applied to discern the best choice among empirical sediment transport57

equations. Here, the response surface surrogate model was applied to quantify the sedimentation uncertainty and58

model dependence on uncertain parameters. Nevertheless, use of surrogate modeling within hydro-morphodynamic59

simulation is relatively new.60

In this paper, we present a new approach to simulate estuarine sedimentation and rule-based dredging over multiple61

decades by combining a reduced-dimension process model and a response surface surrogate model within a stochastic62

Monte Carlo simulation framework. We term this framework the StochAstic model for Multi-decadaL Estuarine Sedi-63

mentation (SeAMLESS). The proposed framework is a response to the engagement of coastal stakeholders in southern64

California under the SedRISE project (Resilient Infrastructure and Sustainable Environments) funded by the Ecolog-65

ical Effects of Sea Level Rise Program (EESLR) of the National Centers for Coastal Ocean Science at the National66

Oceanic and Atmospheric Administration. The EESLR program supports transdisciplinary research projects where67

stakeholders are engaged with the aim of closing the “usability gap" between what scientists and decision-makers68

consider useful climate-rated knowledge (DeLorme et al., 2016).69

In southern California and elsewhere, there is a need to plan for accelerating rates of sea level rise and consider70

changes to sediment management to yield outcomes favorable to coastal ecosystems, flood risk management, and71

financial stewardship (Passeri et al., 2015;Morris et al., 2016; Bilskie et al., 2016). Sea level rise threatens submergence72

of coastal wetlands (Thorne et al., 2018) and increased flood risk (Gallien et al., 2011; Sanders et al., 2020), yet the73

amounts of sea level rise is highly uncertain and partial mitigation of these impacts may be possible through altered74

sediment management practices (Sanders and Grant, 2020; Ulibarri et al., 2020).75

The remainder of the paper is organized as follows: Section 2 presents the theoretical formulation of SeAMLESS76

including the development of a reduced-dimension process model that can be integrated efficiently with the aid of a77

response-surface surrogate model. Section 3 presents an application of SeAMLESS to a site in southern California,78

Newport Bay, where sediment fluxes have been subject to management since the 1980s and there is a need to consider79
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sea level rise in adaptation and resilience planning. Section 4 continues with a second application of SeAMLESS to80

a larger, stylized, system for which a high-fidelity model can more easily be run over long time scales. This affords81

a more critical examination of the SeAMLESS framework based on side-by-side comparisons of SeAMLESS and82

high-fidelity model simulations for the same series of storm events. Section 5 closes the paper with conclusions.83

2. SeAMLESS Formulation84

2.1. Decision-Support with High-Fidelity Process Models85

High-fidelity models for hydro-morphodynamics such as Delft3D (Lesser et al., 2004) numerically solve process-
based equations describing fluid flow, sediment transport and movement of the fluid/bed interface at fine spatial and
temporal scales (Lesser et al., 2004). The solution state of a hydro-morphodynamic model can be defined by U(x, t)

where x ∈ R3 represents the spatial dimensions, t, represents time, and elements of U include the fluid velocity u,
ground elevation zb, sediment concentrations ci for a set of i grain sizes, fluid pressure p, and fluid density �. A general
representation of hydro-morphodynamic models is a system of partial differential equations for U(x, t) that is solved
on a spatial domain  and time interval t = (0, T ) as follows,

)U
)t

= MU (U, I) (1)

where MU is an operator representative of the hydro-morphodynamic simulation model, and I contains the model
inputs that influence the solution, including initial conditions, boundary conditions and model parameters. Once the
solution is simulated, additional operations follow to produce information that is used for decision-making. That is,
decision-makers likely won’t want to know the spatial distributions of fluid velocity, pressure, and density, but rather
some integral measures reflective of the level of sedimentation in the system (total volume of sediment) and/or the
overall water quality of the system. Hence, there exists a set of decision variables D that are obtained by operating on
the solution state (MD) as follows,

D = MD(U) (2)

Decision variables need to be relatively simple, and hence D will generally contain orders of magnitude fewer scalar86

elements than U, and maybe even just one or two, such as the maximum height of the sediment bed within a collection87

basin or the total volume of sediment in collection basin. Generally, to meet decision-support needs with high-fidelity88

models, numerous (computationally demanding) simulations are run (Eq. 1) to generate output describing the spatial89

and temporal evolution of the solution state, and then results are post-processed (Eq. 2) to distill decision variables as90
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shown in Fig. 1a.91

2.2. Reduced Dimension Process Model and Surrogate Model92

A common decision variable is the spatially averaged value of a system property, U(t), taken over a subset of the
model domain, D ⊂ . The subdomain D is chosen to align with the decision-making needs, and in the case of
estuarine sedimentation, aligns with the spatial extent of a regulatory sedimentation zone (or basin) where dredging is
permitted to occur. A general representation of the time-wise changes of the spatially-averaged solution state within
the regulatory basin is given by the following ordinary differential equations (ode) that is solved for the time interval
t = (0, T ),

dU
dt

= MU (U, I) (3)

where the operator MU represents the bulk effects of hydromorphodynamic processes over the spatial extent of subdo-
mainD. In the case of sedimentation and dredging, the key decision-variable is simply the total volume of sediment
that has accumulated in a regulatory sedimentation basin, thus Eq. 3 simplifies as follows,

dzb
dt

= Mz(U, I) (4)

where Mz is a refinement of MU that supports output of a single scalar describing the rate of change in average
bed elevation as a function of the system state and inputs. It is possible to analytically derive the operator Mz from
the operator MU and the subdomain D, discretize the resulting process-based terms, and numerically integrate the
solution to yield predictions of zb(t). However, this process-based approach is not pursued herein. Rather, we introduce
a data-driven approach using a response surface surrogate model, M̃z, as follows,

dzb
dt

= M̃z(U, I) (5)

whereby the surrogate model depicts the time rate of change of the basin-average sediment bed height based on model93

inputs and system conditions that are found, through a diagnostic process, to represent the primary controls. Further-94

more, the response surface surrogate model is quantified by solving the high-fidelity model over a representative range95

of the control variables, which essentially organizes a database or library of known responses that can be accessed as96

needed to numerically integrate Eq 5. Hence, by combining a reduced-dimension process model and a response sur-97

face surrogate model, decision-support needs can be met by numerically integrating an ordinary differential equation98

(Eq. 5) while leveraging data produced by a high-fidelity model as shown in Fig. 1b.99
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)U
)t
= MU (U, I)

I

Physics
dzb
dt
= M̃z(U, I)

I

D = zb

Data

(a) (b)

D =MD(U)

Figure 1: Estimation of decision-support variables, D, using: (a) high-�delity method involving numerical solution of
partial di�erential equations based on �ow physics and post-processing of gridded model output and (b) proposed reduced-
dimension, response-surface surrogate modeling approach that uses �Data" generated by a high-�delity model.

Site-specific considerations will influence the design of the response-surface surrogate model, M̃z Eq. 5, such as the100

size of the estuary, the configuration of the sedimentation basin, the tidal dynamics of the estuary, and the magnitude101

and variability of streamflow into the estuary. In southern California, there are many tidally-influenced lagoons, flood102

control channels, harbors and embayments subject to sedimentation and dredging. These systems are characterized by103

relatively short lengths and negligible tidal amplification. Tides in the region have micro-tidal amplitudes (∼ 1 m ) with104

temporal asymmetry that favors export of coarse and fine sediment to the coastal ocean, although in some systems, tidal105

asymmetry may favor the import of coarse or fine sediment (Guo et al., 2018; Nidzieko, 2010). Additionally, inputs of106

streamflow and sediment are highly episodic. Sediment loads vary by orders of magnitude with storm events (Warrick107

and Milliman, 2003), which last less than a day, and more than 90% of sedimentation occurs during the most intense108

storms (Kroll, 1975; Warrick and Milliman, 2003). Combining mass balance considerations and sub-daily time scale109

of storm events, we can re-formulate Eq. 5 as follows,110

dzb
dt

= 1
�sA

dm
dt

(6)

where m and A are the sediment mass and planform area of the sedimentation basin, respectively and �s is the dry bed
density of the sediment. Furthermore, we can integrate over the time scale of a storm event, T , to yield an equation
for event-based change in sediment basin elevation as follows,

Δzb = ∫

t+T

t

(

dzb
dt

)

dt = Δm
�sA

(7)
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and thus we can advance the sediment basin elevation in time from ti to ti+1 as follows,

(zb)i+1 = (zb)i +
Δmi
�sA

(8)

subject to an initial condition (zb)0 at time t0 which focuses attention on the need for a surrogatemodel that characterizes
the event-based deposition of mass within the sediment basin,Δmi. Taking the event-based watershed load of sediment
to be Li, we can write the event based deposition as,

Δmi = �iLi (9)

where � represents the capture efficiency of the sedimentation basin, i.e., the fraction of the sediment load from a storm
event that is deposited in the basin. Moreover, through a sensitivity analysis using a high-fidelity model (described
in the following section), we find that the primary factors affecting the capture efficiency of the sediment basin are
the peak discharge of the storm event, Q, the average basin elevation zb, and the tidal conditions (which we denote
as �). Hence, event-based changes in sediment mass required to update Eq. 8 are computed using a response surface
surrogate model for capture efficiency, �̃, as follows,

Δmi = �̃
(

Qi, (zb)i, �i
)

Li (10)

which points to the need for high-fidelity model simulations over a parameter space defined by ranges in Q, zb, and111

�i to create a library of solutions from which values of � can be estimated by interpolation as (e.g., Razavi et al.,112

2012). Further detail on surrogate model parameterization is left for the next section, which presents an application of113

SeAMLESS to a site in southern California.114

Two final factors must be considered to support multi-decadal simulations of sedimentation: sea level rise and
dredging events. The former is approached by assuming that the height of the sediment bed is measured with respect
to a tidal datum, mean sea level, which implies that increases in mean sea level correspond to decreases in the bed
elevation. Secondly, dredging events are modeled by assuming that removal of sediment occurs when the sediment
bed elevation reaches a trigger point, (zb)trig, and that the sediment bed elevation is lowered to the initial height (zb)0.
Moreover, we assume that the post-dredging sediment height and trigger height are also measured relative to a tidal
datum, which preserves the range of depths that occur in the sedimentation basin as sea level rises. Combining Eqs. 8
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and 10, the final update equation is given as follows,

(

zb
)

i+1 =

⎧

⎪

⎨

⎪

⎩

(

zb
)

i + �̃
(

Qi, (zb)i, �i
) Li
�sA

−
(

ΔzSLR
)

i , if zb ≤ (zb)trig
(

zb
)

0 , if zb > (zb)trig
(11)

subject to the initial condition given by (zb)0, and where
(

ΔzSLR
)

i represents the change in (absolute) sea level between115

ti and ti+1. Note that increases in sea level rise act against the effect of sedimentation. Hence, as rates of sea level rise116

increase, the amount of sedimentation required to trigger a dredging event increases. Moreover, in the event that the117

rate of sea level rise is faster than the rate of sedimentation, it is not possible for the sediment bed elevation to reach118

the trigger height and thus no dredging events occur.119

The SeAMLESS framework described herein represents a significant departure from previous sedimentation mod-120

eling frameworks involving surrogatemodeling (e.g.,Mohammadi et al., 2018; Berends et al., 2019). Whereas previous121

work focused on more efficiency estimation of uncertainty in sedimentation (Berends et al., 2019) and improved se-122

lection of empirical equations for sediment transport rates (Mohammadi et al., 2018), herein we use a response surface123

surrogate model to evaluate the right hand side of reduced dimension model described by an ordinary differential124

equation, which in turn is configured to account for human influences on sedimentation (dredging events) as well as125

changes in mean sea level due to sea level rise. With this approach, the SeAMLESS framework is positioned to make126

multi-decadal predictions of sedimentation and dredging under different sea level rise scenarios and dredging rules,127

which is responsive to coastal management decision-making needs in southern California and elsewhere.128

2.3. Surrogate Model Construction Process129

Constructing the response surface surrogate model will rely upon modeling expertise coupled with an iterative130

process to identify key model sensitivities. It is highly unlikely that two surrogate models constructed for different131

regions will ever look the same, or even that key state variable and parameters will remain constant. The general132

overview of model construction is provided to the reader below in list format.133

1. Develop, calibrate, and validate high-fidelity hydromorphodynamic model using best available data,134

2. Identify basin with a well-defined geographic boundary and major controls on basin elevation,135

3. Utilize high-fidelity model to explore parameter and state variable space to identify key model sensitivities (flow,136

tidal condition, sediment characteristics, dredging, basin elevation) with which to construct response surface137

surrogate model,138

4. Compare the surrogate model to high fidelity model output and measured basin elevations to evaluate model139

performance,140
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5. Utilize Monte-Carlo or Monte-Carlo Markov Chain model to simulate forcing data and use surrogate model to141

predict future basin elevations.142

3. SeAMLESS Application to Newport Bay143

3.1. Site Description144

SeAMLESS is applied to Newport Bay, a short (10km) estuary in southern California that receives sediment input145

primarily from San Diego Creek (SDC, shaded blue), as shown in Figure 2. The upper portion of the bay contains146

protected wetland habitat while the lower portion is used as a recreational harbor. Historically, excessive sedimentation147

from SDC was the greatest driver of habitat change in Newport Bay, threatening to turn protected wetlands into upland148

habitat (Trimble, 1997). As a result, a sediment management strategy for a total maximum daily load (TMDL) for SDC149

was implemented, stipulating a 50% reduction in overall sediment loads in addition to maintaining a minimum depth of150

2.13 meters below MSL for subtidal habitat in Upper Newport Bay (UNB) (Board, 2014). Newport Bay contains two151

sediment capture basins (outlined in red, Figure 2), Basin I/III at the mouth of SDC and Basin II, further downstream152

of SDC, constructed in 2010 at a cost of $37 million dollars as part of the sediment TMDL with estimated lifespans153

of 20 years (USACOE, 2011). Hydrodynamic calibration was reported by Guo et al. (2018) and additional calibration154

and evaluation for sedimentation appears in the Section 3.5.155

Sedimentation (and the corresponding elevation) of the UNB sediment capture basins is driven by both natural156

processes and human influences. Natural processes include fluvial input and transport by estuarine currents, which are157

primarily affected by streamflow and tidal changes in ocean water levels at the mouth of the estuary. Human influences158

include land uses that affect runoff and the upstream sources of sediment, flood control infrastructure which affects the159

rate and intensity of streamflow and sediment loads, and dredging which affects tidal circulation. Moreover, human160

influences are shaped by watershed and estuarine management policies including the sediment TDML and dredging161

policy. Presently, dredging is required when the sediment capture basins fill to an elevation of 2.13 m below MSL.162

When that “trigger point” is reached, sediment is dredged to the original basin elevation of 6.65 m below MSL and163

disposed of offshore, removing them from the system permanently (Board, 2014; USACOE, 2011). Hence, (zb)trig=164

-2.13 m and (zb)0= -6.65 m.165

3.2. Hydrologic, Oceanographic, and Bathymetric Data166

Stream flow and sediment loading data were acquired for SDC at Campus Drive, a short distance upstream of the167

connection to Newport Bay. This included a 25–year record of daily peak flow (Figure S10) and a concurrent five-168

year year record of five-minute interval instantaneous flow data (Figure S1). Sediment transport curves as a function169

of flow for the same time period were provided by OC Public Works Sediment TMDL Reports ((County of Orange,170
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Figure 2: Newport Bay is an urban estuary of southern California where sediment is managed for water quality, wetland
habitat, recreation, navigation and the provision of urban amenities. Dredging focuses on sediment capture basins (Basin
II and Basin I/III) and a TMDL was implemented to regulate watershed loads from San Diego Creek (highlighted in blue).

2016), Figure S2). Oceanic water level measurements for the period of interest are available from the Los Angeles171

tide gage (NOAA Gage 9410660). Bathymetric data of UNB for the years 2011, 2012, 2013 and 2015 at 2.1 meter172

horizontal resolution (vertical errors not reported) were available as a result of TMDL compliance monitoring by the173

Army Corps of Engineers, and dredging excavation depths were available for 2010 (USACOE, 2011). A 2014 survey174

of Lower Newport Bay (LNB) bathymetry at 7.6 meter horizontal resolution (vertical accuracy of 15 cm) was used for175

LNB (USACE, personal communication), and the 2013 NOAA Coastal Topobathy was used to model land elevation176

and offshore bathymetry (horizontal resolution of 1meter, land vertical accuracy of 4.8 cmRSME, offshore bathymetry177

vertical accuracy of 15 cm RSME) (Dewberry, 2013).178
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Table 1

Model parameters, units, ranges used in sensitivity analysis, and �nal calibrated value.

Model Parameter Units Range Final Calibrated Value

Chezy Bottom Roughness Coe�cient m1∕2

s
0 - 1,000 65

Sand Dry Bed Density kg
m3

1,300 - 2,100 1,600

Mud Dry Bed Density kg
m3

300 - 500 350

Sand D50 m Default Value 1 × 10−4
Critical Stress for Erosion N

m2
0.16 - 0.75 0.16

Critical Stress for Sedimentation N
m2

0.1 - 1,000 0.11

Mud Settling Velocity m
s

Default Value 0.00025

Maximum Mud Concentration kg
m3

10 - 15 12

3.3. High-Fidelity Model: Delft3D179

A two-dimensional (depth-integrated) Delft3D model (version 4.01.01) was constructed with a domain including180

the lower part of the San Diego Creek, Newport Bay and a nearshore zone. Delft3D resolves fluid flow, sediment trans-181

port, and morphodynamics at fine spatial and temporal scales and has received widespread use for coastal hydromor-182

phodynamics (Lesser et al., 2004). Delft3D was configured with an inland inflow boundary where the instantaneous183

volumetric flow rate and sediment load is specified, and an open boundary around 8 km offshore where water level is184

specified. The model mesh contains approximately 46,519 cells with high resolution in the bay and a minimum cell185

size of 5 × 10 m, with lower resolution offshore and a maximum cell size of roughly 150 × 350 m. The computational186

mesh and flow resistance parameters are based on a hydrodynamic calibration and evaluation described in Guo et al.187

(2018). Bed erosion parameters in the Delft3D model were developed from field measurements and computational188

experiments (Stein, 2014). Delft3D was calibrated to match morphological change between 2011 and 2012, and then189

evaluated for the period 2010-2015. Five-minute interval flow data for 2010 to 2015 was used to specify the freshwater190

inflow from SDC (and sediment loading based on sediment transport curves) and six-minute interval tide measure-191

ments from Los Angeles were used to specify the water level at the offshore open boundary of the model. Calibration192

involved the manual adjustment of several parameters including the sediment curve, erosion/sedimentation thresholds,193

and dry density of mud within physically plausible ranges, which are shown in Table 1.194

A morphological acceleration factor is usually used to achieve decadal to centennial morphodynamic changes195

(Roelvink, 2006), but for Newport Bay, spatially distributed bed levels were updated at each hydrodynamic time step196

(= 0.05 min) which corresponds to a morphological acceleration factor of unity. A sensitivity analysis using the197

highest tidal ranges (spring tide in January) and lowest erosion parameters measured in the bay (threshold for erosion198

= 0.16 N/m2) found that little to no morphological changes occurred throughout the whole estuarine system during dry199

weather (< 1% of yearly morphodynamic change). Based on this analysis, dry weather events river discharge (< 20200

cms) were ignored for the calibration and evaluation phases of the Delft3D modeling, and time integration of the Delft201
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Table 2

Measurements of sediment bed height and 2D and 3D Delft3D model predictions for a one year period, 2010-2011.

Unit I/III Basin Heights

Year Measured Height Modeled Height (2D) Modeled Height (3D)

2010 -6.654 -6.654 -6.654
2011 -6.294 -6.297 -6.109

Unit II Basin Heights

Year Measured Height Modeled Height (2D) Modeled Height (3D)

2010 -6.654 -6.654 -6.654
2011 -6.405 -6.333 -6.343

3D model was limited to the periods of time when SDC streamflow exceeded 20 cms. The tidal water level from the202

LA tide gauge was used for each storm to drive the oceanic boundary condition, with a period between storms driven203

by a tidal cycle of 9 to 57 hours. This was done to ensure that the previous storm was not impacting the hydrodynamics204

of the proceeding storm.205

Two sediment fractions, one non-cohesive sand (grain size of 100 �m) and one cohesive mud (settling velocity of206

0.25 mm/s), were used to simulate sediment transport, erosion and deposition. The largest source of sediment in this207

system is fine material from San Diego Creek. Data collected as part of sediment TMDL found that fines constitute208

approximately 56-96% of the total load in San Diego Creek, model calibration found that a 95% mud fraction yielded209

the closest agreement between model and data (County of Orange, 2016, 2013). The concentrations of fines are defined210

by the sediment rating curves (see Fig. S2) based on 25 years of flow and sediment measurements by OC public works211

(County of Orange, 2016). The relatively small sand fraction of the sediment load is modeled under the assumption of212

equilibrium concentrations and an unlimited supply of available sediment (Van Rijn et al., 1993; Deltares, 2014).213

The dry bed densities are 1,600 kg/m3 and 350 kg/m3 for sand and mud, respectively. The Van Rijn et al. (1993)214

formula is employed to calculate non-cohesive sand transport in which both bed load transport and suspended sediment215

transport are taken into account. Details of the Van Rijn et al. (1993) formulae can be found in the user manual of216

Delft3D (Deltares, 2014) andVanRijn et al. (1993) thus are not repeated here. For cohesive sediment, the Partheniades-217

Krone formulation is applied to calculate mud transport (Partheniades, 1965). The critical erosion of the mud used218

were set to measured values and are 0.16 N/m2 (Stein, 2014). The critical threshold for deposition was calibrated to219

0.11 N/m2 from 1,000 N/m2 (which resulted in a calibration basin height of -6.14 m for the year 2012 compared to220

-6.04 m when using 0.11 N/m2 and a measured value of -6.047), for the Unit I/III basin. These values suggest that221

erosion only happens when the calculated bed shear stress is >0.16 N/m2 and deposition occurs when shear stress is222

<0.11 N/m2 (Deltares, 2014; RMA, 1998).223

A two-dimensional approachwas used over a three-dimensional formulation (using 10-� layers) based on the results224
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of a 2D vs. 3D comparison for a one year period, 2010-2011. As shown in Table 2, the 2D model performed better225

than the 3D model in the Unit I/III basin, with a 3 mm difference in modeled vs measured average basin elevation226

compared to the 3D model’s 18 cm difference. In the Unit II basin, the 3D model performed slightly better than the227

2D model, with only a 1 cm difference between the two. Unit I/III basin is largely well mixed (Trimble, 2003), so the228

3D model introduces extra physical processes which increases potential model uncertainty and noise, explaining the229

differences between the 2D and 3D model. Other studies have found that a 2D works equivilently well compared to 3D230

approach for hydrodynamics /salinity (Sandbach et al., 2018) and sediment transport modeling in estuarine systems231

(Achete et al., 2017) Based on the lack of improvement in model accuracy, and very significant gains in computational232

speed (roughly 10 times faster), the 2DDelft3Dmodel was chosen to finish model evaluation and develop the surrogate233

model.234

3.4. Response Surface Surrogate Model235

The surrogate model can only be built after a numeric model (such as Delft3D) is calibrated and evaluated, at
which point numeric model parameters are not changed. Then, the surrogate model can be constructed and evaluated
against measured data to ensure surrogate model robustness. To develop the response surface surrogate model, the
high fidelity model was configured to simulate 24 hour storm events based on the peak flow into the estuary, Q, a
triangular hydrograph shape with a 5 hour and 11 hour time to rise and fall, respectively, a pre-event sediment basin
elevation, zb, and a mixed regime tidal boundary (to match the tides at Newport Bay) with a period of 13.3 hours, an
amplitude, a, and a phase �. These results showed that the most important variables to consider for estimating the
sediment capture efficiency, �̃, are the flood peak and the pre-event basin elevation. Furthermore, results showed that
the phasing and amplitude of the tide had a secondary effect, with the maximum deposition occurring when the flood
peak occurred during the maximum flood currents of a spring tide and the minimum deposition occurring when the
flood peak was timed with maximum ebb currents of a spring tide for this system. Capturing all possible combinations
of tidal amplitude and phase would introduce two additional independent variables to the response surface surrogate
model (in addition to Q and zb), and assuming that m different values of each independent variable would need to be
sampled to map out �̃, the required number of high-fidelity model runs would increase from m2 to m4, an increase by a
factor m2. This motivated the formulation of capture efficiency as a weighted average of the minimum and maximum
capture efficiency over the tidal cycle, (�̃min and �̃max, respectively) as follows,

�̃
(

Q, zb, �
)

= [1 − �] × �̃min
(

Q, zb
)

+ � × �̃max
(

Q, zb
) (12)

where � is a weighting factor that is treated as a random variable between zero and unity. In southern California,236

tidal amplitudes transition between small neap tides to large spring tides with a fortnightly cycle, and also experience237
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Figure 3: Response surface surrogate models �̃ebb (a,b) and �̃f lood (c,d) for Basin I/III (a,c) and Basin II (b,d) of Newport
Bay. Note that the x-axis is logarithmic and only shows storms from 50 cms to 1,400 cms for visual clarity.

semi-diurnal and diurnal variability. Where a flood peak falls within this cycle is, in fact, random. Hence, treating238

� as a random variable in Eq. 12 with a uniform distribution between zero and unity leads to a surrogate model for239

sediment capture efficiency that accounts for both deterministic (Q and zb) and random (tidal conditions) aspects of240

the system. In the case of Newport Bay, the maximum capture efficiency was found to occur when the flood peak241

was coincident with the peak flood current (�̃max = �̃f lood), and the minimum capture efficiency was found to occur242

when the flood peak was coincident with the maximum ebb current (�̃min = �̃ebb). However, we anticipate that this243

could vary from site to site which reiterates the site-specific nature of a response-surface surrogate model. Future244

studies could investigate a diversity of sites and develop potentially develop generalizations of basin response surface245

surrogate model sensitivities to tides, flows, sediment supply and basin elevations.246

Fig. 3 presents the response surfaces for �̃ebb and �̃f lood, respectively, for both the Unit I/III and Unit II basins. Basin247

I/III has an average � of 12.3% and 13.8% and Unit II with an � of 10.1% and 11.1% for peak ebb and flood currents,248

respectively. Additionally, these surfaces show the nonlinear response of capture efficiency to Q and zb characterized249

by local maxima and minima. Importantly, mapping out this dependence using the high fidelity model positions the250

reduced-dimension surrogate model to efficiently make multi-decadal simulations with a high level of computational251

efficiency in two separate basins within the same system.252
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Figure 4: High-�delity model (Delft3D) and SeAMLESS output (SM) compared to measured quantities of average basin
elevation (zb, panels a & c) and yearly change in average basin elevation (Δzb, panels b & d) for the Unit I/III (panels a
& b) and Unit II (panels c & d) basins. The error bars on the surrogate model account for model uncertainty due to tidal
in�uence (�), which is treated as a random variable.

3.5. SeAMLESS Evaluation253

The high-fidelity model and SeAMLESS were both applied to simulate five years of sedimentation (30 storms254

exceeding baseflow threshold during 2010-2015) in Newport Bay which corresponds to a duration when annual bathy-255

metric monitoring data are available for validation purposes and gauge measurements are available to specify model256

inputs including streamflow, sediment loads and tides. Figure 4 presents comparisons of the high-fidelity and reduced-257

dimension surrogate model predictions of zb in Basin I/III and Basin II, which compare favorably to measured changes.258

The models were quantitatively compared based on the Root Mean Square Error (RSME) in basin elevation.259

SeAMLESS performs better than the high-fidelity model for the Unit I/III basin (RSMEDelf t3D = 0.00253 m vs.260

RSMESM=0.00072 m) and slightly worse for the Unit II basin (RSMEDelf t3D=0.00166 m vs. RSMESM=0.00180261

m). This is likely due to stronger tidal currents in the Unit II basin which are also reflected by the larger error bars262

appearing in Figure 4c-d compared to Figure 4a-b. Furthermore, the SeAMLESS model uncertainty due to tidal influ-263

ence bounds the high-fidelity model simulations for most years–the exception being years 2011 and 2015 in Unit I/III.264

The maximum yearly error (difference in deposition) was 0.081 m and 0.11 m for the surrogate and Delft3D models,265

respectively in the Unit I/III basin.266

Relative runtimes of SeAMLESS and the high-fidelity model were examinedwith an 85 year simulation of Newport267

Bay. SeAMLESS was run using a single core on a 3.0 Ghz processor, while the high-fidelity model was run on a high-268
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Table 3

High-�delity model runtimes and SeAMLESS speedup based on a runtime of 42 seconds.

System Model Runtime (hrs) SeAMLESS Speedup

1-core 6,033 5.16 × 105
4-core 3,448 2.95 × 105
8-core 1,675 1.43 × 105
16-core 1,370 1.17 × 105
32-core 944 8.07 × 104
64-core 359 3.07 × 104

performance computing cluster (64-core compute nodes with 2.33 GHz AMD processors and 512 GB of RAM) using269

1 to 64 cores. We note that SeAMLESS integrates over flood events, and the high fidelity model integrates over periods270

with significant streamflow (not dry weather periods) although a short period (<24 hours) is modeled between wet-271

weather events for to allow the hydrodynamics to reset to a tidally forced state. SeAMLESS computes this simulation272

in 42 seconds, while the high-fidelity model run time varies from hundreds to thousands of hours depending on the273

number of cores. Table 3 presents the high-fidelity model runtimes and SeAMLESS speedup, defined by the ratio of274

the high-fidelity model runtime to the SeAMLESS runtime (for a single simulation). This shows that individual, multi-275

decadal simulations can be completed(104−105) times faster using SeAMLESSwithout any obvious loss of accuracy276

in terms of basin-averaged decision variables of interest to stakeholders. Moreover, further gains in computational277

efficiency are possible through parallel execution of SeAMLESS simulations. These results show that SeAMLESS278

is ideally configured to support Monte Carlo Markov Chain simulations of sedimentation and dredging that account279

for a range of possible storm peak sequences, sea level rise trajectories, and dredging rules–modeling that would be280

prohibitively expensive using the high-fidelity model.281

3.6. Multi-decadal SeAMLESS Simulation282

Stochasticity is introduced to SeAMLESS for multi-decadal simulations with daily SDC peak flow (Q) based283

on a Monte-Carlo Markov Chain (MCMC) random sampling (see supplemental text for details on MCMC sampler,284

including historical data used to develop the sampler as shown in Fig. S3) and treating variability in tidal conditions285

(�) as a uniformly distributed random variable (Eq. 12, Fig. 3). Sediment loads for each day are based on sediment286

rating curves (Fig. S4), and mean sea level is adjusted based on SLR projections (Fig. S5). The surrogate model was287

developed to span the range of possible inflows into Newport Bay (Q = 10 cms to 1,400 cms), basin elevations (zb =1288

m depth to 6.65 meters depth), and tidal condition � (peak ebb or peak flood). Note that Fig. 3 only shows the response289

surface for Q > 50 cms for visual clarity. Storms below 50 cms yield complex surfaces due to a higher influence of290

tidal currents and contribute little to overall basin elevation changes.291

The model accounts for dredging policy by testing for the exceedance of the trigger point (2.13 meters belowMSL)292
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Figure 5: Five examples (color-coded) of multi-decadal MCMC simulations of SDC �ow (panel a), Basin I/III elevation
(panel b) and Basin II elevation (panel c) using the surrogate model. Dredging events are marked by vertical drop in basin
elevation (zb), and di�erences in timing are linked to the occurrence of large storm events (Q). A total of one thousand
MCMC simulations are completed to yield probability distributions in expected sedimentation and dredging over future
years.

on a daily timescale and resetting the elevation in accordance with the post-dredging elevation. Moreover, various293

scenarios involving changes in natural forcing and human influences are considered to directly simulate dredging, the294

decision variable of interest (D) as in Figure 1. As an example, Figure 5 shows five MCMC simulations of long-term295

sediment basin elevation changes for the Unit I/III (b) and Unit II (c) basins given an input of future storm events (a)296

generated from the MCMC sampler.297

Note that sediment basin elevations (zb) increase over time, increase in proportion to the occurrence and magnitude298

of storm events (Q), and are lowered with the occurrence of dredging. Also note significant variability in the timing299

of dredging which results mainly from the random occurrence of large storm events. Monte Carlo Markov Chain300

(MCMC) simulations of daily peak Q were used to drive SeAMLESS were run 1,000 times to capture the future301

uncertainty in dredging scenarios. MCMC transition probabilities were kept constant for the purposes this study, as302

incorporating climate change is beyond the scope of this work. It is important to note however, that the speed of the303

surrogate model allows for quick model re-runs and would allow modelers and stakeholders to easily evaluate impacts304

of changing hydro-climatology on dredging, given a hydrologic model of the watershed.305

The timing and occurrence of future dredging events is of interest to stakeholders due to the considerable expense in306

dredging (roughly $37 million 2010 dollars per cycle). Fig. 6 demonstrates a potential output of SeAMLESS showing307

MW Brand et al.: Preprint submitted to Elsevier Page 17 of 28



Multi-Decadal Sedimentation Modeling

Figure 6: SeAMLESS estimates of the expected number of dredging events through 2100. The baseline scenario (black)
corresponds to existing dredging rules and SLR based on the median RCP 4.5 projection (0.61 m by 2100). Colored areas
show the range in dredging events based on the range in the dredging trigger point (red) or range in SLR from RCP 2.6
(0.33 m by 2100) and H++ scenario (3.05 m by 2100).

the cumulative likelihood of number of dredging events through 2100 for various scenarios. This was calculated by308

taking the mean of the MCMC simulations for the cumulative dredging required to maintain minimum basin depth309

through 2100.310

The solid black line shows the cumulative number of required dredging cycles through 2100 under current dredging311

requirements ((zb)trig=-2.13 MSL) and SLR based on the median projection RCP 4.5 scenario (0.61 m by 2100)312

provided by Griggs et al. (2017). Additionally, the range of dredging cycles corresponding to a range in SLR (through313

2100) and a range in the the dredging trigger point are also shown. The low and high levels of SLR are based on RCP314

2.6 (0.33 m by 2100) and the H++ scenario (3.05 m by 2100) reported for Southern California by Griggs et al. (2017).315

High and low value of (zb)trig corresponding to -1.0 m and -3.26 m MSL, or roughly a 1 m change.316

Fig. 6 shows that the number of dredging events is not very sensitive to SLR until after 2050, when the differences317

in SLR become significant. In this limit, the higher SLR scenario (H++) requires less dredging (mean 2.58 total318

dredging cycles) compared to the minimum SLR scenario (RCP 2.6, mean 3.17 dredging cycles). This trend is a result319

of SLR adding to basin depth, deepening the basin with respect to the original 2.13 meters below 2015 MSL. Focusing320

now on the dredging trigger point, what becomes clear is that the effect on the number of dredging cycles is evident321

within the first two decades of the simulation (before 2040). Additionally, the effect on the total number of dredging322

cycles is substantial. Maintaining a deeper basin elevation (-3.26 m MSL “trigger point”) mandates more than two323

additional dredging cycles through 2100 based on 4.36 total dredging events for a -3.26 m MSL trigger point and 2.15324

dredging events for a -1.0 m MSL trigger point.325

The projections shown in Fig. 6 are responsive to the decision-making needs of coastal sediment management326
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stakeholders: probabilities for how much dredging will need to be done, when it needs to be done, and how trigger327

points (rules) can be adjusted to manage future dredging. As part of the the SedRISE project, an earlier version of328

this result was presented at a meeting with stakeholders and received favorably. In particular, it was reported that329

dredging events need to be planned (and budgeted) well over a decade in advance due to challenges with permitting330

(e.g., Ulibarri et al., 2020), so a multi-decadal forecast of dredging was highly valued. In addition, stakeholders were331

very interested on how SLR would impact future dredging events. Simple bathtub approaches for investigating the332

impacts of SLR on coastlines are simple to use and quick to run, but inadequately characterize the dynamic effects333

of SLR (Passeri et al., 2015). Using SeAMLESS for coastal management is beyond the scope of this paper, but it’s334

important to emphasize that SeAMLESS makes it possible to quickly simulate how a particular management action (in335

this case dredging) will be affected by environmental factors like SLR and policy factors like dredging trigger points,336

which is valuable for dialogue and deliberation by stakeholders (DeLorme et al., 2016; Sanders et al., 2020; Stephens337

et al., 2020).338

4. SeAMLESS Application to a Stylized Estuary339

A stylized estuary fed by a river and open to the ocean is used to further validate the efficacy of SeAMLESS340

for predicting average sediment basin elevation over multi-decadal time scales in systems where sedimentation is341

controlled by loading during storm events, as in southern California. Moreover, we seek to gain a better understanding342

of SeAMLESS limitations with a second stylized application.343

The geometry of the stylized system is presented in Figure 7, and is characterized by a 667 meter wide river from344

the North at 16 meter depth with respect to mean sea level (MSL). The river opens to a 14 × 38 km long estuary, with345

an average depth of 3 meters, and a maintained channel depth of 16 meters. The estuary has a 2×2.5 km sedimentation346

basin where the river meets the estuary, which is designed to trap riverine material before it enters the lower portions347

of the estuary, as in Newport Bay. The estuary mouth is 6 km wide with the main channel maintained at 16 meter348

depth to the open ocean. A high-fidelity Delft3D model is created of this system using a total of 8,993 grid cells, with349

the highest resolution where the river meets the estuary (100 × 100 meter spacing) and the coarsest spacing near the350

oceanic boundaries (1, 000 × 1, 000 meter spacing).351

4.1. High-Fidelity Model352

The stylized Delft3D model is forced by streamflow at the northern boundary and a tidal time series at the southern353

boundary, and all other boundaries were treated as walls. Streamflow was simulated with a 24 hour flood hydrograph,354

and 12 hour time to rise and fall. The flood peak was randomly generated using Monte-Carlo sampling of peak flows355

(from 500 - 20,000 cms) which were transformed into daily triangular hydrographs, and sediment load was computed356
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Figure 7: Stylized model model domain and bathymetry.

with an idealized sediment curve. See Fig. S7 for the peak-flow cumulative distribution function and Fig. S8 for357

sediment-concentration curve used in the high-fidelity stylized model. A period with 500 cms baseflow in the high-358

fidelity model river lasting a randomly chosen duration between 12-24 hours (uniform distribution) was added between359

storms to re-establish tidal control of the hydrodynamics and to avoid storm peaks being phase-locked with the tide.360

Tides were modeled by a 1 meter amplitude tide (with respect toMSL), a period of 12 hours, and phase of zero. Rough-361

ness was modeled using the Chezy roughness formula (C=65 m1∕2/s) with a free slip condition for wall roughness.362

Two sediment fractions were used, one for sand (dry bed density: �sand = 1600 kg/m3) and mud (dry bed density:363

�mud = 500 kg/m3, critical bed shear stress for sedimentation and erosion was 1,000 and 0.5 N/m2, respectively. The364

initial bed layer was a 5 meter thick bed of sand. The equilibrium condition for sand transport (Van Rijn and Walstra,365

2003) was used at the inflow boundary. A morphological scale factor of 5 was used to speed computation with no loss366

in accuracy (Lesser et al., 2004; Ranasinghe et al., 2011).367

4.2. Response Surface Surrogate Model368

A response surface surrogate model of the form given by Eq. 12 was developed by running the high-fidelity model369

for a range ofQ and zb values during peak flood and ebb currents and maximum and minimum tides. Peak streamflow370

values were 500, 1,000, 2,000, 4,000, 6,000, 8,000, 10,000, 15,000, and 20,000 cms. Average sediment basin elevations371
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ranged from a low of 3 meters, up to 16 meters, spaced at intervals between 1 meter (from 3 to 4 meters) to 2 meters of372

elevation change (from 4 to 16meters). Sediment yield for the surrogate model was computed for a given peak flow (Q)373

by integrating the triangular flow hydrograph multiplied by the instantaneous sediment concentration which yielded374

the regression equation for sediment load shown in Fig. S9. The surrogate model accounted for the morphological375

scaling factor in the high-fidelity model simulations by multiplying all incoming sediment volumes by the equivalent376

scaling factor (MF=5). Two variants of the surrogate model were developed based on model simulations which found377

that �̃max and �̃min were coincident with peak flood (�̃f lood(Q, zb)) and ebb (�̃ebb(Q, zb)) currents as in Newport Bay.378

However, the authors note that this is site specific, and that high-fidelity model simulations of the system are required379

to investigate the major controls on �̃max and �̃min for each site.380

4.3. Multi-Decadal Simulations381

Multi-decadal simulation of sedimentation in the stylized estuary was completed by configuring both the high382

fidelity model and SeAMLESS to depict a sequence ofN=200 storm events. In southern California, there are roughly383

∼5-10 storm events which occur in any given year and thus 200 storms roughly equates to 20-40 years. Integration384

over events is straightforward using SeAMLESS (Eq. 11). A sequence of 200 consecutive Monte Carlo samples of385

peak flow created time series of storm events, Qi, i = 1,… , N which were input into both SeAMLESS and the high386

fidelity model. These storm peaks were simulated until Qi = 200, or until the basin infilled to 3 meters below mean387

sea-level, whichever came first. This was repeated for 100 different storm peak sequences (each containing a string of388

200 peaks) to sample an exhaustive range of possible storm peak sequences and average out tidal effects. Account of389

tides between the high fidelity model and SeAMLESS was slightly different in accordance with the functionality of390

each model: whereas the high-fidelity model uses a random variable to vary the phasing between the storm peak and391

the tide peak between successive events, SeAMLESS uses a random variable (�) to compute a weighted average of392

�̃max and �̃min. Moreover, for each storm peak sequence, SeAMLESS was repeated 2,000 times using � as a random393

variable. Hence, the final sequence of (zb)SMi for each storm sequence is computed as the average over 2,000 trials and394

can be considered to be a tidally-averaged solution at the event time scale.395

Solutions for each of the 100 different storm sequences were averaged to compute a time series of (zb)i represen-
tative of an average over many different possible storm sequences. Hence, the accuracy of SeAMLESS was measured
by the mean error (ME) in zb (average over 100 storm sequences) relative to the high-fidelity model (averaged over
100 storm sequences

ME = 1
N

N
∑

i=1
(zb)Delf t3Di − (zb)SMi (13)

whereN represents the number of events in the storm sequence (when the basin reaches 3meters belowmean sea-level,396
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Figure 8: Frequency distribution of Mean Error in zb (Eq. 13) from 100 stochastic storm sequences simulated by SeAMLESS.

or Qi = 200 storm events.397

The distribution of errors from 100 different storm sequences is shown in Fig. 8. This distribution passes the K-S398

test for normality (p=0.47) with a mean of -0.0607 m and standard deviation (�ME) of 0.1476 m. Conceptually, the399

results in Fig. 8 indicate that the surrogate model (SM) slightly overestimates average basin elevation by roughly 6400

cm on a per-storm basis when compared to the high-fidelity model. This equates to only 0.46% when normalized by401

overall basin infilling (13 m). Additional insight is obtained by examining the time series predicted by SeAMLESS and402

the high-fidelity model for specific storm sequences that generate different levels of error, as measured by Eq. 13. Fig.403

9 shows time series of zb predicted by SeAMLESS and the high-fidelity model based on ME at a range of quantiles:404

(a) -95% (b), -5% (c), +5%, and (d) +95%. While the surrogate model tends to underestimate deposition (ME =405

-0.0607 m), overall, the surrogate model shows nearly equivalent performance compared to Delft3D as the basin is406

filled. Additionally, the surrogate model performs with roughly an order of magnitude lower ME for the first 100 storm407

sequences (ME = -0.0061, �ME = 0.0922), indicating that SeAMLESS is especially adept at predicting basin elevation408

for roughly the first 10-20 years of basin infilling.409

We attribute the largest source of error in SeAMLESS simulation to arise from the assumption that sediment bed410

elevation is uniform across the sedimentation basin, which was used to build the response surface function. Defining411

T as the time required for the zb to rise up to the top of the sedimentation basin (3 m), Fig. 10 shows contours of bed412

elevation predicted for t=0, 0.4T , 0.8T , and T . This shows that the sediment basin fills in a non-uniform manner, a413

feature that is especially evident for t ≥ 0.8T .414

MW Brand et al.: Preprint submitted to Elsevier Page 22 of 28



Multi-Decadal Sedimentation Modeling

Figure 9: Comparison of high-�delity model (Delft3D) and SeAMLESS (SM) predictions of zb over 200 sequential storm
events for the following quantiles in Mean Error: (a) -95%, (b) -5%, (c) +5%, and d +95%.

5. Conclusions415

A reduced-dimension surrogate model for estuarine sedimentation within a managed sediment basin, SeAMLESS,416

is formulated herein and shown to support multi-decadal simulation with uncertainty and yield decision-variables417

useful for management in Southern California. Useful output includes the number of expected dredging events in418

the future, the timing of events, and volumes of sediment associated with these events under different sea level rise419

scenarios and rules (or “trigger points") for dredging.420

SeAMLESS is shown to yield accuracies comparable to a high-fidelity model, while the wall clock run time is421

reduced by a factor of(104) even after the high-fidelity model is executed in parallel on a high performance computing422

cluster with up to 64 cores. The accuracy of SeAMLESS stems from using a calibrated and validated high-fidelity423

model to develop and parameterize a response surface surrogate model for the capture efficiency of a sedimentation424

basin, �̃, defined as the ratio of sedimentation volume to storm load of sediment over the time scale of a storm event.425

In essence, SeAMLESS relies on a physics-based model to create a set of data that, in turn, is easily accessed to map426

out the response of sediment basins to future storm events that bring sediment into the estuary. The computational427

efficiency of the reduced dimension surrogate modeling approach is shown to support Monte Carlo simulation of428

future scenarios which provides information about the uncertainty in outcomes.429

Sea level rise is expected to reduce the need for dredging in many coastal systems, since high sea levels increase430

depth. Based on SeAMLESS modeling of Newport Bay, expected dredging through 2100 for the lowest estimate of431

RCP 2.6 and highest estimate (H++ scenario) sea level rise trajectories reported by (Griggs et al., 2017) corresponded432
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Figure 10: Pattern of sedimentation within the sedimentation basin at times (a) t=0, (b) 0.4T , (c) 0.8T , and (d) T , where
T represents the instant the sedimentation basin reaches its capacity and the green rectangle represents the sediment basin
de�nition used to develop the surrogate model.

to 3.2 and 2.6 events, respectively. However, SeAMLESS also shows that moving the trigger height for dredging from433

2.13 m (MSL) down to 1 m (MSL) or up to 3.26 m (MSL) could change the expected number of dredging events to 2.1434

and 4.4, respectively. This result shows that rules for dredging exert a strong control over the timing and number of435

dredging events that are needed to manage critical coastal systems like Newport Bay under sea level rise, and reinforce436

the utility of the SeAMLESS framework as a tool for coastal stakeholder groups to develop rules for dredging under437

sea level rise.438

SeAMLESS was formulated based on coastal embayments in Southern California, where tidal basins are relatively439

small and experience episodic runoff and sediment loads lasting less than a day, and where dredging is needed to440

support recreation, navigation, water equality, and ecosystems needs. While this general approach may be appropriate441

at sites elsewhere, it is important to acknowledge that response surface surrogate models need to be custom built442

for each site utilizing a high-fidelity numeric model. Hence, a high-fidelity model is important for designing the443

response surface function (i.e., choice of independent variables) and for parameterizing the response surface function.444

Based on the results of this paper, the authors conclude that a surrogate model works when deposition is 1) spatially445

homogenous, 2) the surrogate model area is greater than the numerical model cell size, and 3) confined to a well-defined446

basin / region. Further research would benefit surrogate model research by investigating developing surrogate models447

for spatially heterogeneous regions (such as wetlands) using statistical methods to describe the spatial structure of448
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deposition. Additional research incorporating ecological and flood impacts of changing dredging trigger points would449

improve the utility of the model.450

Consideration of a stylized estuary test case also showed that non-uniform filling of the sedimentation basin may451

emerge as a source of error in the sediment capture efficiency used by reduced-dimension surrogate model. Neverthe-452

less, the accuracy of SeAMLESS was found to be comparable to the high-fidelity model for timescales up to several453

decades.454
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• Estuarine sedimentation is a complex physical process
• High-fidelity model runtimes hinder multi-decadal simulation
• A response surface surrogate model estimated multi-decadal basin depths
• Surrogate model was orders of magnitude faster compared to high-fidelity model
• Surrogate model was able to attain equivalent accuracy to high fidelity model




